Using Smith normal forms and μ-bases to compute all the singularities of rational planar curves

نویسندگان

  • Xiaohong Jia
  • Ron Goldman
چکیده

Article history: Received 13 July 2011 Received in revised form 18 November 2011 Accepted 10 February 2012 Available online 14 February 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Smith Normal Forms and mu-Bases to Compute all the Singularities of Rational Planar Curves

We prove the conjecture of Chen, Wang and Liu in [8] concerning how to calculate the parameter values corresponding to all the singularities, including the infinitely near singularities, of rational planar curves from the Smith normal forms of certain Bezout resultant matrices derived from μ-bases.

متن کامل

Approximate µ-Bases of Rational Curves and Surfaces

The μ-bases of rational curves and surfaces are newly developed tools which play an important role in connecting parametric forms and implicit forms of curves and surfaces. However, exact μ-bases may have high degree with complicated rational coefficients and are often hard to compute (especially for surfaces), and sometimes they are not easy to use in geometric modeling and processing applicat...

متن کامل

Using a bihomogeneous resultant to find the singularities of rational space curves

We provide a new technique to detect the singularities of rational space curves. Given a rational parametrization of a space curve, we first compute a μ-basis for the parametrization. From this μ-basis we generate three planar algebraic curves of different bidegrees whose intersection points correspond to the parameters of the singularities. To find these intersection points, we construct a new...

متن کامل

Normal forms of Hopf Singularities: Focus Values Along with some Applications in Physics

This paper aims to introduce the original ideas of normal form theory and bifurcation analysis and control of small amplitude limit cycles in a non-technical terms so that it would be comprehensible to wide ranges of Persian speaking engineers and physicists. The history of normal form goes back to more than one hundreds ago, that is to the original ideas coming from Henry Poincare. This tool p...

متن کامل

An Optimal G^2-Hermite Interpolation by Rational Cubic Bézier Curves

In this paper, we study a geometric G^2 Hermite interpolation by planar rational cubic Bézier curves. Two data points, two tangent vectors and two signed curvatures interpolated per each rational segment. We give the necessary and the sufficient intrinsic geometric conditions for two C^2 parametric curves to be connected with G2 continuity. Locally, the free parameters w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Aided Geometric Design

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012